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Abstract 

Extreme complexity in the Human Leukocyte Antigens (HLA) system and its nomenclature makes it difficult to 
interpret and integrate relevant information for HLA associations with diseases, Adverse Drug Reactions (ADR) and 
Transplantation. PubMed search displays ~ 146,000 studies on HLA reported from diverse locations. Currently, IPD-
IMGT/HLA (Robinson et al., Nucleic Acids Research 48:D948–D955, 2019) database houses data on 28,320 HLA alleles. 
We developed an automated pipeline with a unified graphical user interface HLA-SPREAD that provides a structured 
information on SNPs, Populations, REsources, ADRs and Diseases information. Information on HLA was extracted from 
~ 28 million PubMed abstracts extracted using Natural Language Processing (NLP). Python scripts were used to mine 
and curate information on diseases, filter false positives and categorize to 24 tree hierarchical groups and named 
Entity Recognition (NER) algorithms followed by semantic analysis to infer HLA association(s). This resource from 109 
countries and 40 ethnic groups provides interesting insights on: markers associated with allelic/haplotypic associa-
tion in autoimmune, cancer, viral and skin diseases, transplantation outcome and ADRs for hypersensitivity. Summary 
information on clinically relevant biomarkers related to HLA disease associations with mapped susceptible/risk alleles 
are readily retrievable from HLASPREAD. The resource is available at URL http://​hla-​spread.​igib.​res.​in/. This resource is 
first of its kind that can help uncover novel patterns in HLA gene-disease associations.
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Background
Human Leukocyte Antigen (HLA) locus consists of six 
classical genes (HLA-A, −B, −C, −DP, −DQ and -DR) 
that play an important role in eliciting immune response 
against pathogens [24] and three non-classical genes 
(HLA-E, −F and -G) that interact with Natural Killer 
cells to regulate virus-infected and malignant cells [25]. 
HLA genes harbour a large number of mutations. As of 
September 2020, there are 28,320 HLA alleles reported 

in IPD-IMGT/HLA database. These variations mostly 
arise to generate defensive mechanisms against patho-
gens. However, some variations also confer risk to auto-
immune diseases like rheumatoid arthritis, multiple 
sclerosis, Type 1 diabetes and Graves’ disease etc. More 
than 100 different autoimmune diseases, infectious dis-
eases and adverse drug reactions have been reported to 
be associated with HLA genes [4, 10, 32]. These alleles 
have clinical utility as diagnostic markers for example 
in rheumatoid arthritis, ankylosing spondylitis [17–19]. 
They are also used in genetic screening e.g. HLA-B*57:01 
in Caucasian population for abacavir hypersensitivity, 
HLA-B*15:02 in Chinese and Asians for carbamazepine 
induced life-threatening conditions like Stevens-Johnson 
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syndrome (SJS) and toxic epidermal necrolysis (TEN) [9, 
29]. In the context of transplantation, mismatch of HLA 
alleles between donor and recipient impacts the solid 
organ and hematopoietic stem cell transplantation out-
comes [3, 26]. Each of the reported studies is unique in 
itself as they describe the molecular basis of disease asso-
ciations, HLA matching and anti-HLA antibody forma-
tion that are relevant for transplantation. Besides, studies 
also report some relevant and associated clinical infor-
mation, e.g. different HLA-B27 subtypes are reported 
to be associated with clinical categories under spondy-
loarthropathies [16]. There are other studies that impli-
cate HLA allele association with the composition of gut 
microbiome and diseases [2, 12, 36]. The expanse of this 
information is immense as there is wide genetic variabil-
ity and heterogeneity among populations [6]. Although 
advancements in HLA typing technologies has been ben-
eficial in identifying novel HLA sequences [30], this has 
also led to reporting the same HLA allelic variant using 
different HLA nomenclature.

With the rapid increase in biomedical data, HLA alleles 
and their associations in multiple diseases, it becomes 
imperative to create a platform with structured informa-
tion to query and retrieve relevant information. Current 
knowledge about HLA limits to individual papers that 
can be searched through PubMed or reviews where a 
subset of studies has been summarised. Hitherto, there 
exists no database that complies the existing HLA related 
information in an organised framework. In absence of 
such a repository, resource sharing among researchers 
and clinicians becomes a big challenge.

The integration of computer sciences with biomedical 
research has accelerated the progress, both in terms of 
novel discoveries and data structuring. Natural Language 
Processing (NLP) is a method to extract relevant infor-
mation from unstructured data [7, 14, 15, 31]. A simple 
NLP pipeline contains 4 components: data assembly, 
pre-processing and normalization, Named Entity Rec-
ognition (NER) and Relation Extraction (RE). The output 
of NLP algorithms, i.e. structured dataset can be used 
to generate insights via direct interpretation or through 
downstream analyses. In recent times, NLP methods 
have started gaining popularity in biological sciences. For 
instance, Rakhi et al. [27] reported a text mining pipeline 
to study spice-disease associations and link phytochemi-
cals from different spices/herbs to diseases. Another 
report by Lee et.al highlights BioBERT [22], a pre-trained 
biomedical language representation model that can 
be used for various text mining tasks like NER, RE and 
question answering, specifically on biomedical datasets. 
Similarly, PubTator Central [35] is an open access tool 
available via NCBI that uses text mining algorithms for 
assisted bio-curation of entities in literature. The tool 

uses NER to identify and thus highlight six bio-entities 
viz. Gene, Disease, Chemical, Mutation, Cell Line and 
Species from abstracts and open access articles available 
on PubMed. Another interesting report by Kuleshov et al. 
[21] presents a machine compiled database for study-
ing genotype-phenotype associations generated using 
applications of text mining on genome-wide association 
studies (GWAS). All these resources work on similar text 
mining algorithms, but each has a different set of appli-
cations and tasks to perform. The use of these resources 
as such in addressing the HLA research often overlooks 
the extent of variability of HLA complex and involved 
parameters in this domain. For instance, PubTator Cen-
tral is able to mine gene names from literature, but 
would not pick HLA allele information e.g., it will high-
light HLA-DRB1 when the user search query is HLA-
DRB1*01:01. Conventional processes to individually 
mine a large amount of unstructured literature available 
on HLA research requires both manpower and resources. 
For understanding and integrating the observations from 
HLA studies we require knowledge of genomic datasets, 
i.e. diseases, SNPs, drugs, populations, and ethnic groups 
along with an understanding of the relationship between 
them. NLP based text mining is an ideal approach to 
understand the complexity of this process to create a 
structured information.

We provide HLA-SPREAD (Fig.  1) as a platform for 
integrated HLA resources that has been developed using 
NLP to understand the complexity of this locus. The 
resource provides a platform to summarize HLA related 
genomics knowledge as well as to design and develop new 
hypothesis. In this study, we have used publicly available 
~ 28 million peer reviewed abstracts. We extracted bio-
medical entities including HLA alleles, diseases, SNPs, 
drugs and geographical locations. We also tried assigning 
positive and negative relationships between disease and 
alleles. This HLA connectivity was then used to address 
biologically and clinically relevant objectives like HLA-
biomarkers and risk and protective alleles for various 
diseases.

Construction and content
Data retrieval
MEDLINE was used as a source of biomedical litera-
ture that comprises more than 28 million peer-reviewed 
articles from over 5600 scholar journals. Bulk data was 
downloaded from the FTP server in XML format. HLA 
alleles with nomenclature were downloaded from IPD-
IMGT/HLA database [11]. To maintain uniformity in dis-
ease names and their IDs, we used MeSH keywords from 
UMLS (Unified Medical Language System). Drugs asso-
ciated with side effects were obtained from SIDER 4.1, 
Allele Frequency Net Database (AFND) and PharmGKB 
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[13, 20, 33]. Allele frequency of HLA alleles were also 
taken from AFND. Extensive Pre-processing was done 
on all the datasets before they were implemented in the 
pipeline.

Pre‑processing and keywords dictionary
PubMed parsing
A modified version of PubMed parser was used to 
extract PMID, title, abstract, publication date, journal, 
article type and authors’ information from MEDLINE 
biomedical literature dataset [1]. Only records with the 
above information were considered for further analy-
sis and stored in a tabular format. All the subheadings 
in the abstract viz. background, introduction, objec-
tive, method, experimental design, result, discussion, 

importance, setting, design, study objective, patients, 
participants and conclusion were removed.

Disease dictionary
Mentions of disease keywords were identified using a 
dictionary created from UMLS 2019MRCONSO.RRF 
[5]. UMLS is a set of biomedical vocabulary that includes 
data from OMIM, Gene Ontology, Clinical repositories, 
Medical Subject Headings (MeSH) and NCBI taxon-
omy. In this study, we used MeSH descriptors including 
Entry Term (ET), Main Heading (MH), Preferred Entry 
term (PEP), Descriptor Sort Version (DSV) and Machine 
Permutation (PM). Descriptor Entry Version (DEV) 
was excluded as keywords belonging to this category 
were incomplete, e.g. abdominal injury was reported as 

Fig. 1  Workflow of HLA-SPREAD
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abdominal inj. These descriptors are assigned a unique 
MeSH ID which is stored in a hierarchical format with 
24 head categories along with a unique Descriptor ID. 
We termed the root form of the disease as level-zero and 
top-level diseases as level-one for our analysis. Multiple 
forms of a disease like diabetes insipidus, diabetes mel-
litus, type 1 diabetes, juvenile-onset diabetes and others 
are assigned the same MeSH ID. This dataset was also 
supplemented with keyword variants such as plural and 
lemmatised forms to increase the search space.

HLA dictionary
Keywords for HLA alleles and their nomenclature were 
fetched from the centralized repository of international 
ImMunoGeneTics project (IMGT) database. IMGT is 
updated quarterly with submission or deletion of alleles 
and their nomenclature and currently houses 28,320 
alleles. Many reports do not follow the conventional HLA 
allele nomenclature which makes mapping a strenuous 
task. To maximally capture all HLA alleles, we created 
a dataset comprising of all possible keywords including 
the removal of special characters, whenever required. We 
have also attempted mapping all the old nomenclature 
to the current allele names. This dictionary also includes 
few generic HLA keywords like HLA class I, HLA class 
II, HLA linked and HLA associated. There are few alleles 
based on old nomenclature that belong to more than one 
antigenic group, hence they were put under “broad anti-
gen” category. A few haplotypes that were a combination 
of more than one HLA allele were grouped in “haplotype” 
category.

Named entity recognition
Keyword matching across abstracts
A python-based NER pipeline was implemented to fil-
ter abstracts based on a dictionary matching approach 
using parallel multiprocessing. Disease and HLA allele 
keyword dictionaries were used for initial screening. 
Abstracts were converted to lower case with special 
characters removed and if a match was found in either 
title or text, the abstract was sentence tokenized using 
sentence tokenizer, a part of python Natural Language 
Tool Kit (NLTK). We encountered a great extent of vari-
ability in the names of disease keywords. Most of it had 
special characters like (−) and (‘) in the keyword or with 
the plural and singular forms. To deal with the former, 
we kept instances of sentences where special characters 
were not removed, this increased the search space that 
enables capturing of keywords such as Stevens-Johnson 
syndrome (Stevens Johnson syndrome), Graves’ disease 
(Graves disease). Our disease dictionary was already 
enriched with plural and lemmatized forms of key-
words to tackle the latter. For HLA allele keywords, word 

boundary-based regex matching was implemented to 
search alleles in the sentences. Sentences with at least a 
single mention of both HLA allele and disease keywords 
were considered for further steps.

Identification of tags: populations, drugs and SNPs

Populations  The filtered abstracts were processed using 
spaCy NLP tagging algorithm (model: en_core_web_md) 
to search for mention of populations in text. From the 
two output tags, i.e. GPE (Geo-Political Entities) and 
NORP (Nationalities Or Religious Groups), we selected 
the keywords having the latter as GPE tag often reported 
scientific names of organisms as populations when 
applied on biomedical data, e.g. scientific names such as 
Chlamydia spp. and Chlamydomonas spp. were reported 
under GPE tags. The output was classified into countries 
and ethnic groups for further analysis with the help of an 
expert anthropologist. Manual curation of the obtained 
list was also done to remove plural and inappropriate 
entries.

Drugs  The information on drugs with side effects 
were taken from the SIDER database (SIDER 4.1). We 
also added 16 drugs from AFND and 26 drugs from 
PharmGKB, whose information was missing in SIDER. 
The list of drugs was mapped across the dataset to check 
for its occurrences in selected HLA related abstracts. 
There were many instances where drug names were 
subpart of disease keywords, e.g. “insulin” was obtained 
as a false match wherever it was present as a part of the 
disease name “insulin dependent diabetes mellitus”. A 
small python snippet was written to remove such false 
positives.

SNPs  SNP IDs were mapped across abstracts of the 
HLA dataset using the RegEx module of python. The 
algorithm iteratively searched for all instances of RSIDs 
using regular expression “[rR][sS][0–9]{2,}”. All the tags 
captured in various sentences of abstracts were stored in 
a list of strings format along with their respective PMIDs 
for facilitated future access.

Semantic assessment
N‑GRAM evaluation and manual labelling
N-grams refers to a contiguous sequence of n items (can 
be syllables, letters, or word pairs) in a text for determin-
ing the context of said items in a sentence or paragraph. 
We used the functions of NLTK viz. WordNetLemma-
tizer, WordPunctTokenizer and CollocationFinder to 
create a corpus of NGRAMS (n = 1, 2 and 3) from the 
abstract dataset. After removal of stop words, that do 
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not add significant meaning to the context, a subset con-
sisting of all reported verb/adverb (n = 1), adverb-verb 
(n = 2,3) combinations based on a frequency cut-off was 
filtered out using Part of Speech (POS) tags of tokenised 
words. We observed that N-grams for negative labels 
often gave misleading information, e.g. “HLA-B27 nega-
tive” refers to the absence of allele rather than a negative 
association between entities. Hence, we used very strin-
gent criteria for choosing negative labels. Manual anno-
tation of positive and negative labels was then carried out 
on this dataset and a total of 1127 labels (Supplementary 
Table  1) were categorised (1107 positive and 20 nega-
tive) for labelling the sentences. We assert a positive label 
where the HLA allele is positively associated with disease 
and hence its presence makes individuals susceptible to 
disease, whereas in negative statements the HLA allele is 
negatively associated with disease and hence protective 
for the disease. We also considered negation words like 
“not, none, no” which if present, can reverse the actual 
meaning of the sentences. Instances of above mentioned 
three keyword sets (positive, negative and negation) were 
iteratively searched in all the sentences. Further, a coding 
scheme was constructed using the binary layout to label 
sentences as positive, negative, negation, complex ambig-
uous. Sentences having no match from either of the cat-
egories were labelled as others.

Root‑verb and associated adverbs using dependency parsing
Dependency parsing refers to the formation of a tree 
layout based on the semantics of a sentence, where the 
root node is represented by a verb that describes relation 
between different entities of that sentence. Direct imple-
mentation of word tokenization, first step in dependency 
parsing, generates multiple tokens for single allele and 
disease keywords as shown in Fig. 2. Therefore, to ensure 
the accuracy of the algorithm, the allele and disease key-
words present in each sentence were replaced with @
GENE and @DISEASE tags and a parse tree was then 
generated using StanfordCoreNLP python module (Stan-
ford-corenlp-full-2018-10-05 package). The list of verbs 
obtained from the root nodes of all the sentences in the 
dataset was manually curated under positive and negative 
labels. We also added a category “Studied/Investigatory” 
that doesn’t convey any positive or negative context but 

have mentions of both entities together, e.g. “To investi-
gate the association of HLA-A, B, and DRB1 alleles with 
leukaemia in the Han population in Hunan province”.

Sentence annotation
We termed our approach as “hybrid approach” for label-
ling sentences, where annotation was done using both 
N-gram labels and the type of root verbs. If a sentence 
had a positive N-gram label and a positive root verb, 
that inferred the relationship between entities as associ-
ated or linked, then the sentence was labelled as positive. 
For negative labelling also we used the same approach. 
Finally, labelling of sentences were grouped into differ-
ent categories: 1) Positive, 2) Negative, 3) Both positive 
and negative, referring as Complex sentences, 4) Positive/
negative + negation referring as Ambiguous group, 5) 
Investigatory and 6) Others (−).

Database and web server
HLA SPREAD database is built for quick and easy 
retrieval of information related to HLA genes. The web 
interface was designed in HTML5, CSS3 & ES6 (JavaS-
cript) and the backend was developed in Laravel 8 (PHP 
Web Framework) & MySQL for the database. Laravel is a 
PHP web framework proposed for the development of a 
web system following the Model View Controller (MVC) 
architecture. We used D3.js for data visualization and 
SQL indexing for search table integration. The server was 
hosted using Apache HTTP (PHP) server. The database 
uses Relational Database Management System with data 
stored in the table. JavaScript handles the data visualiza-
tions and Laravel handles the search queries, indexing, 
and the data export section. This web interface is com-
patible with various devices and browsers except the fea-
ture “Show entries” in the search tab is visualised best in 
Mozilla Firefox. Figure 3 gives insights in using the HLA-
SPREAD search.

Utility and discussion
Mining Medline literature for HLA association
NLP based text mining of ~ 28 million publicly avail-
able biomedical abstracts provided 47,049 abstracts 
with either one or more sentences that describe the 

Fig. 2  Tokenization and Dependency parsing: In this example, the keyword “Multiple sclerosis” is tokenized to “Multiple” and “sclerosis” separately 
with parts of speech Adjective and Noun respectively
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relationship between the HLA alleles and diseases. To 
understand the distribution of various kinds of articles 
published among the filtered abstracts, we studied the 
article type per year trend from 1975 to 2021 (Fig. 4). We 
found research journal, comparative study and review 
articles to have maximum numbers every year. In addi-
tion, there were papers corresponding to clinical trials 
phase I, II, III and IV and observational studies highlight-
ing the importance of this locus in translational studies.

HLA genes, alleles and its distribution
There are 28,320 alleles in the IMGT database with many 
of them associated with a disease or pathological condi-
tions. There also exists a great extent of variability in the 
names within articles. E.g. HLA-B*13:01, a risk factor for 
dapsone hypersensitivity syndrome in multiple popula-
tions was written as HLA-B*13:01, HLA-B*1301, B*1301, 
B(*)1301 and B1301 in different papers. If one has to 
search for an allele and its related information, the user 
must be aware of all possible formats of writing an allele 
encompassing its current and previous nomenclature. So, 
based on this, we converted all existing HLA keywords 
to a standard allele name. We identified only ~ 1% of the 
total alleles to be associated with conditions like diseases, 
graft survival, or drug reactions. To represent these alleles 
in the form of a graph, we collapsed the nomenclature to 
two-digit level (Fig. 5). Majority of the studies were with 

HLA-B loci, followed by HLA-A and HLA-DRB1, while 
fewer studies were on HLA-C locus. Each HLA alleles, 
collapsed to its two-digit information are linked to AFND 
server in the database, highlighting its allele frequency. 
The focus of our present study was also to understand 
the semantics between alleles and diseases, wherein we 
noted that some alleles were reported as protective and 
some as risk alleles. e.g. reports indicated HLA-DRB1*15 
was protective for HIV and risk allele for pulmonary 
tuberculosis [23, 28]. We were also interested in explor-
ing the effects of multiple alleles individually on a single 
disease. To address this, we listed out 54 articles (Sup-
plementary Table 2) highlighting the fact that for a single 
disease, different alleles can have contrasting effects, e.g. 
HLA-DQA1*02:01 and HLA-DQB1*06:02 can be protec-
tive in Artemisia pollen-induced allergic rhinitis while 
HLA-DQA1*03:02 can be a risk factor [34].

Exploring diseases, its associated categories and other 
relevant information
The HLA studies were divided into four broad catego-
ries: Diseases, Transplantations, Sign and Symptoms, 
and Therapeutics/ADRs, to study the information sys-
tematically. This grouping was done based on the MeSH 
keywords identified in the abstracts There are a total of 
24 categories for diseases in MeSH, ranging from C01 
and C04 through C26. We grouped C23 as “Sign and 

Fig. 3  HLA-SPREAD search: A screenshot of HLA-SPREAD to assist user in understanding HLA-SPREAD interface and easy retrieval of data
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Symptoms” and C20.452 (GVHD) as part of Transplanta-
tion and rest as disease categories. Keywords falling under 
E04 (Transplantation procedures) were also grouped 
under “Transplantation”. For “Therapeutics/ADRs”, we 
selected only those sentences that had mentions of drug 

keywords, allele name and disease names together. We 
filtered them further if they satisfied either of the three 
conditions: 1) Belongs to Drug adverse reactions category 
or 2) Sentences had mentions of keywords such as reac-
tions, −induced(carbamazepine-induced) or 3) Disease 

Fig. 4  Nature and trends of HLA related publications in PubMed annually from 1975 onwards: Stacked Bar plot shows distribution of PubMed 
articles in different categories. a Diverse studies including clinical trials are reported, with maximum numbers represented in the “journal article” 
category. b A subplot of (a) after removing the most frequent “Journal article” type to visualise the trends in other categories

Fig. 5  The topmost reported HLA alleles associated with diseases: All the HLA alleles indicated have been grouped to their second digit and 
represented in the pie chart. HLA-A, HLA-B and HLA-DRB1 are the most studied amongst the HLA genes
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keyword had mention of –induced (Drug-induced liver 
injury). The remaining were grouped as “Diseases”. There 
are 32,714, abstracts in the Disease category, 10,370 in 
Transplantation, 8574 in Signs and Symptoms and 429 in 
ADR’s.

To study the association with diseases, we analysed 
data from the “Diseases” and “Transplantation” category. 
Inconsistency in writing disease names increases the 
efforts in searching a specific query. To reduce this vari-
ability, MeSH ID was used to summarise the obtained 
information e.g. diseases like tumour, cancer, malignancy, 
and neoplasm (malignant and benign) were mapped to 
a single entity malignancy (D009369). Collapsing a large 
number of similar keywords to a single ID reduces the 
complexity in searching for articles related to particular 
diseases. We observed a total of 3661 different disease 
terms mapping to unique 1904 MeSH IDs. Figure 6 rep-
resents a snapshot of common HLA associated diseases. 

To examine the disease associations, we mapped it to 
level-one (level-zero) terms. Diabetes Mellitus Type 1, 
Rheumatoid Arthritis, Multiple Sclerosis (Autoimmune 
Disease), Melanoma and Leukemic (Neoplasms by His-
tologic Type), Psoriasis (Skin disease) and Celiac Disease 
(Metabolic) were the topmost HLA associated diseases. 
In the analysed abstracts, the list of HLA associated dis-
eases/conditions indicates that some diseases were very 
frequently reported, whereas other diseases like Down 
syndrome, Guillain-Barre Syndrome, Polymyalgia Rheu-
matica were infrequently or rarely reported. Supplemen-
tary Table 3 represent the distribution of both common 
and less explored HLA associated diseases.

To get an overall perspective of genes and diseases, 
we considered the diseases at level-one along with HLA 
gene. We observed the majority of reported associa-
tions with HLA-DRB1, followed by HLA-B and HLA-A 
(Fig. 7). We also listed details of individual allele-disease 

Fig. 6  Diseases/conditions associated with HLA genes: Graph represents three level hierarchy of diseases. Each colour represents a level. There are 
24 major categories as represented in green colour, which is further divided into subcategories. Each disease name is matched to its Mesh id and a 
normalised mesh keyword. Autoimmune, Neoplasms and Joint disease are the top most associated diseases. As anticipated, significant numbers of 
studies related to transplantation are also observed



Page 9 of 14Dholakia et al. BMC Genomics           (2022) 23:10 	

pairs for more information (Supplementary Table  4). 
HLA-DRB1 was reported to be linked with disease condi-
tions like malignancies, rheumatoid arthritis, type 1 dia-
betes, multiple sclerosis and 1052 other diseases. HLA-B 
association was reported with spondylitis, polyarthritis, 
uveitis, sacroiliitis, psoriasis and 779 other diseases and 
HLA-A was reported to be associated with malignancies, 
melanoma, influenza, breast cancer and 654 other dis-
eases. The analysis also takes into consideration the dis-
eases which require transplantation and also include the 
complications associated with it both pre and post-trans-
plantation. As anticipated, we observed that individuals 
suffering from beta Thalassemia and sickle cell anaemia 
(genetic and congenital disorders), multiple myeloma (an 

immunoproliferative disorder) and liver injury under-
went transplantations of bone marrow, hematopoietic 
stem cells and renal tissue. However, there were other 
additional details included with the transplantation data 
such as disease history of patients before undergoing 
transplantation e.g. psoriasis, Graves’ disease, diabetic 
neuropathy and post-transplantation complications e.g. 
Ischemia, Necrosis, Fibrosis, Haemorrhage.” Such col-
lated information under one platform may be of interest 
to a clinician for designing therapy modules. Supplemen-
tary Table 5 represents details of transplantation related 
studies.

Fig. 7  Heatmap of HLA Disease associations: The gradient heat map representing the number of diseases associated with HLA genes. First column 
represents generic “HLA” studies where specific gene information is not mentioned. A large number of associations were also observed with 
Non-classical (HLA-E,F,G) genes
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SNPs and HLA diseases
HLA loci have a repertoire of genetic variations, a large 
number of which have been linked to multiple diseases 
via genome-wide association studies (GWAS). Though 
GWAS lists information about SNPs in/associated with 
HLA gene, a number of genetic variation studies go 
unnoticed either because they are small cohort analy-
sis or are not compiled in a single resource for system-
atic study. Thus, to include the overlooked studies and 
missing information, this analysis reports information 
from all kinds of studies and includes abstracts mainly 
from journal articles, review, metanalysis, letters, and 
clinical trials. To acquire robust data, we retained only 
those HLA variations, that are present in the sentences 
along with the disease and allele keywords. We identified 
1543 unique SNPs mention and its details is compiled 
in Supplementary Table 6. Majority of SNPs mapped to 
intronic variants followed by missense and intergenic. 
Figure  8 represents genomic distribution of mapped 
SNPs. A substantial number of variations also mapped to 
genes other than HLA, indicating they may be in Link-
age Disequilibrium (LD) or frequently occur in condi-
tions like transplantation success or ADRs example [8]. 
We observed top hits of SNPs mapping to infectious dis-
eases like HIV and hepatitis, inflammatory conditions 
like psoriasis, complex diseases like asthma and diabetes 

and hypersensitivity largely attributed by drug ADRs. 
SNP association studies are also based on a proxy SNP, 
which can be in LD with the causal variant and the LD 
values vary from one population to another. To address 
this, we also added population information of the studies 
whenever available in the abstract. The most studied SNP 
rs9277535, associated with hepatitis B virus, has been 
studied across a large number of populations from Asian 
and central Asian countries like China, Japan, Asia, Tur-
key, Korea, and Indonesia.

Geographical spread of HLA literature across various 
ethnic groups and populations
Genetic differences in HLA genes across populations and 
their link with biological conditions make it imperative to 
consider geographical information while studying HLA 
association with a particular condition. We assumed that 
the population/ethnic groups name might not be present 
in the same sentences that mention HLA and disease, so 
we used a flexible approach here and fetched the names of 
geographical locations present anywhere in the abstracts. 
In total, we reported 149 unique NORP tags which were 
binned into 109 country-based populations and 40 ethnic 
groups. Figure  9 represents the frequency distribution 
of these matched populations belonging to the countries 
and ethnic groups. Japan, China, USA, India and Italy are 

Fig. 8  Genomic distribution of SNPs: Pie chart representing the number of variations in genic region with majority of them mapping to introns
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the major countries where the HLA gene-disease asso-
ciation studies have been reported with disease groups 
as shown in Supplementary Table  7. Along with this, 
the European subcontinent has been extensively stud-
ied (1296 reports) as a major ethnic group. Apart from 
frequently studied areas, we also observed locations like 
New Zealand, Armenia and Sri Lanka that have a low 
number of reported studies. This type of analysis can 
help researchers understand not only the extent of allele-
disease associations among populations in the context of 
these immune players but also the scope of research in 
their selected geographical location while planning their 
hypothesis.

Response to therapeutics
HLA genes are known to have association with vari-
ous hypersensitivities and drug reactions, a few of them 
like Stevens-Johnson syndrome can also be life-threat-
ening. Due to allele differences among individual and 
population level, these hypersensitivities vary, and thus 
studying these pharmacogenetic markers with the pop-
ulation information becomes important. For instance, 
we observed from our data that HLA-A*31:01 is asso-
ciated with carbamazepine induced Stevens-Johnson 
syndrome in European population while HLA-B*15:02 
is associated with Chinese and Indian populations. 
A meta resource like HLA-SPREAD can help under-
stand such population-wise differences that obstruct 

designing of therapy modules for ADRs/ hypersensitivi-
ties. To be more specific, this analysis focuses on drugs 
that are present in sentences along with the disease and 
allele keywords. We observed a total of unique 7017 
abstracts mentioning 506 unique drugs, of which 163 
mapped to ADR category. Details of drugs and related 
information are listed in Supplementary Table  8. We 
also validated our results with AFND, a manually 
curated database that has information about ADRs 
and PharmGKB (Fig. 10a and b). Out of 167 drugs pre-
sent, we were able to find 30 common with AFND and 
44 common with PharmGKB. One of the drugs “Val-
poric acid”, mentioned in AFND, was not present in the 
actual cited article and 11 drugs in AFND and 26 drugs 
in PharmGKB could not be captured because of the 
stringent criteria of drug mapping i.e. the drug name 
should be present in the sentence along with disease 
and allele keyword. Figure 10c lists the frequency-based 
distribution of top 20 drugs fetched from our analysis. 
Interestingly, we also observed 133 and 119 drugs that 
are not mentioned in AFND database and PharmGKB 
respectively, e.g. HLA-B*38:02:01 allele was found to 
predict carbimazole/methimazole induced agranulo-
cytosis, HLA-DRB1 associated azathioprine induced 
pancreatitis in IBD patients. This analysis highlights, 
how one can miss information apart from the time and 
manpower intensive nature in manual curation. The 
details of common and exclusive drugs in comparison 

Fig. 9  Geographical Spread of HLA studies: Identified geographical locations are binned to the nearest a Country b Ethnic group. Color gradient 
representing the count of various HLA alleles with respect to disease or ARD’s studies. China, Japan and the USA report maximum studies and 
European, Asian and African are the most studied ethnic groups. This figure is generated employing the data analysed from HLA-SPREAD. Figure (a) 
was created using Maps options in the Tableau software and figure (b) was created using “treemap” package in R
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with AFND and PharmGKB is listed in Supplementary 
Table 9.

Insights from HLA‑SPREAD: biomarker analysis
We demonstrate the usability of the database to address 
clinically relevant queries. Multiple questions on the 
identification of HLA alleles and diseases linked with 
hypersensitivity, allergy, genetic marker, prognosis and 
diagnosis can be addressed using HLA-SPREAD. As an 
example, we present an analysis to identify biomarkers 
in HLA studies. To address this question, we used an 
n-gram based approach to identify the keyword most 
frequently occurring with “marker” in the sentences.. 
The topmost occurring keywords identified were 
biomarker, genetic marker, HLA marker, predictive 
mraker, prognostic marker, risk marker and suscep-
tibility marker. We checked the details of such sen-
tences and complied the information (Supplementary 
Table  10). A few of them like abacavir hypersensitiv-
ity and SJS syndrome were present in multiple papers. 
HLA-G and HLA-E were also reported to be markers 
for conditions like tumour, transplantation and heart 
diseases.

Conclusion
In summary, we collated all the HLA associations from 
the list of ~ 28 billion publicly available abstracts and 
observed review/associations with an increasing trend 
since 1975. We also observed articles from clinical tri-
als phase I, II, III and IV. One of the key highlight of the 
analysis is that we were able to reduce the complexity of 
HLA nomenclature by converting all existing old nomen-
clature in literature to the current format. This can facili-
tate the understanding of multiple studies across years 
and populations. The HLA-SPREAD database also has 
access to the worldwide allele frequency distribution 
across populations. We were also able to consolidate all 
the HLA studies into four different categories 1) Disease 
associations 2) ADR’s 3) Transplantation 4) Sign and 
symptoms. We listed the ARD’s across populations and 
identified HLA alleles used as a biomarker. Towards the 
end of the work, we have also addressed the semantics 
of the associations, i.e. if the HLA allele is protective or 
susceptible for disease/ADR association. This is one of its 
kind of efforts to integrate the diversity of HLA informa-
tion into a structured format for ease of query and analy-
sis. This could also provide an informative resource for 
the non-HLA specialists for initiating any new studies in 
populations and diseases.

Fig. 10  Statistics of drugs related HLA studies: A Comparison of ADR’s identified using HLA-SPREAD with AFND. B Comparison of ADR’s identified 
using HLA-SPREAD with PharmGKB. C Bar plot showing the topmost 20 drugs identified
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